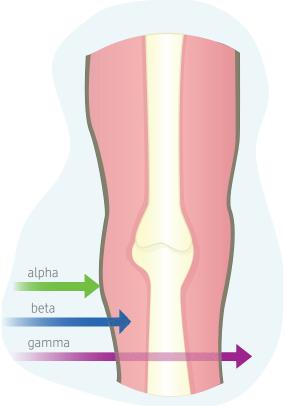


Beta radiation

Rössing Uranium

Working for Namibia


WHAT IS BETA (β) RADIATION?

Some properties of these β particles include:

- The β particle is an electron.
- Compared with the alpha (α) particle, a β particle is much lighter – about 7,000 times lighter than the α particle.
- The β particle is **charged**, but less so than the α particle – it is therefore less strongly ionising than the α particle but more so than gamma (γ) radiation, which is uncharged.
- The β particle interacts with matter but not as strongly as the much heavier α particle. The β particle can penetrate a few 10 cm of air and can penetrate 1 to 2 cm into living tissue.
- The β particle is easily stopped by a sheet of aluminium.

Beta (β) particles are highly energetic electrons emitted from atomic nuclei during radioactive decay.

Cross section of a human leg, demonstrating the penetration depth of radiation types: alpha radiation is stopped by human skin, beta radiation penetrates into the skin and gamma radiation penetrates the body entirely.

- β radiation cannot make a target radioactive.
- Because the β particle penetrates only skin deep into human tissue, the dose from beta radiation is often referred to as a 'skin dose'.
- The β particle can be emitted from both heavy and light radioactive nuclei. Lighter radioactive nuclei, such as carbon-14 or potassium-40, are usually exclusively β particle emitters.